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INTRODUCTION 

This report is one of a series dealing with the theoretical and experi- 

mental aspects of elastic-plastic bending of beams.  For the most part the 

material presented in this report is not new and can be found in the litera- 

ture although in quite fragmented form.  Therefore it was felt there was a 

need to put the material into a more organized form which hopefully would be 

more meaningful to those engaged in development or processing type activities. 

The writer has gone into a fair amount of detail in developing the theoretical 

expressions on a step-by-step basis.  This should aid the reader in tying this 

material to that obtained in undergraduate strength of material type courses. 

Although the theory Is rather simple, it can give a certain amount of insight 

into the complex area of gun tube straightening. 

DEVELOPMENT OF BASIC EQUATIONS 

Bending Moment - Depth of Elastic-Plastic Interface 

As a simple example to illustrate the approach in calculating the bending 

moment, we can consider the case of a rectangular beam.  The moment is 

determined from two integrals.  We integrate through the first region where 

the stress ov varies linearly with distance from the neutral axis (NA). The 

first integral for the partial moment which we shall call Mj is then: 

,m 
M: = / av(bdy)y (1) 

o 



As  shown  in Figure   1,  p   is the distance  from the upper fiber to the elastic- 

plastic  interface,  m is the  distance  from the NA to the elastic-plastic  inter- 

face,  and y  is the distance  from the NA to the differential element.     By ratio 

we  can determine that 

y 
0V  =  Oy  (-) (2) 

m 

Substituting this expression into equation (1) above, we obtain 

m   y 
Ml = / Oy(-)(bdy)y (3) 

o   m 

Now performing the simple integration, we obtain the expression for Mj. 

Oyb 
VL\  =   m2 (4) 

The second integral for the partial moment which we shall call M2 is 

evaluated from m to h/2.  Since strain hardening is neglected for the simple 

case being studied, the stress av contained in equation (1) above is constant 

and equal to Oy.  The second integral is then: 

fh/2 
M2 = /   av(bdy)y (5) 

m 

Evaluating this simple integral, we obtain the following expression for M2 

ayb  h2 
M2 = ---  [-- - m2] (6) 

2   4 



Combining expressions (4) and (6) for the partial moments Hi  and M2 we obtain 

the total moment in terms of the geometry of the cross section, the yield 

stress, and the depth of the elastic-plastic interface. 

Oyb 
M =   [h2 + 2ph - 2p2] (7) 

6 

Here we have made use of the relationship m = (h/2) - p and a factor of 2 has 

been inserted to take care of the bottom half of the cross section.  Equation 

(7) can be easily programmed even using a hand calculator to give values as a 

function of the various parameters.  Figure 2 shows a family of curves from 

this expression for different values of the yield stress av.  Two special 

cases can be derived from equation (7).  If p = 0, M = My (the yield moment) 

and we have 
Oybh2 

My = ----- (8) 
6 

If p = h/2, the elastic-plastic interface coincides with the NA..  The fully 

plastic moment  then becomes 

aybh2 

Mfp = -~~ (9) 

The ratio of the fully plastic moment to the yield moment is a constant for 

rectangular beams. 

Mfp/My =1.5 (10) 

Or we could say that the fully plastic moment is 50 percent greater than the 

yield moment for a rectangular beam. 



A second and somewhat more difficult example considers the case of a 

beam having a tubular cross section.  To determine an expression for the bend- 

ing moment we have to consider two cases.  The first case is when the elastic- 

plastic interface lies between the outside surface and the bore.  The second 

case is when the elastic-plastic interface is located between the NA and the 

bore.  Case one will be discussed first.  With the aid of Figure 3 we set up 

three equations as follows, using a similar approach as for the rectangular 

beam.  The first integral accounts for the elastic stress acting on the area 

delimited by the large circle. 

Ml -*/  °v y dA = 4/  Oy/R2-y2 dy 
o o 

Ml - M  öy(-)y/R
2-y2 dy 

o   m 

4öy m 
Mi =   / y2/R2-y2 dy (11) 

m  o 

Evaluating equation (11) from tables we obtain: 

4ö v    m D2 m 

M =   (_ -(RZ-^)
3
/
2
 + __[m(R2^n2)l/2 + R2sln-1(_)]}      (12) 

m    4 8 R 

where a factor 4 has been inserted to account for the double symmetry about 

the x and y axes. 

The  second integral  subtracts the elastic  stress for the small circle. 

This  integral  is the  same as equation  (11)  above except  r replaces R and the 

limits go  from 0 to r.     Hence, 
4ay    r 

M2  = j     y2   /r2_y2   dy (13) 

m       o 



Evaluating this gives 

Mo - - 
2m 4m 

M2 = ^   sln-l   (!)   =  (14) 

Finally,  to determine  integral three,  we  integrate through the  region 

from m to R where  the  stress av takes on the  constant  value  Oy as  follows: 

R R 
M3 =  4/     ov y dA = 4/     Oy y /R2-y2  dy 

m m (15) 

M3 = ^°y/ y  /R2-y2 dy 
m 

Evaluating this we get: 
40y 

M3 =   (R2-m2)3/2 (16) 

Now combining Mj, M2, and M3 we obtain the desired expression for the total 

bending moment. 

ay    9   9 a/o    ay  0   9   9 wo    Vr"    ay R1*       , m M = -- (R2-m2)3/2 + __ R2(R2^,2)1/2 + sin~l(-)    (17) 
3 2 4m    2 m      R 

Substituting the value for m = R-p, we obtain an expression for the bending 

moment in terms of yield stress, the geometrical parameters, and the depth of 

the elastic-plastic interface p for the region r < m < R. 

öy Öy OyTlr^ Oy R"+ R_ ß 
M = --  (2RP-P2)3/2 + -- R2(2Rp-p2)1/2 -I- sin-1   ( )   (18) 

3 2 4(R-p)     2     (R-p) R 

Specializing this equation for the case p = 0, we can obtain an expression for 

the yield moment. 
OyTT 

My = (Rk-rk) (19) y       4R 



We now set up the integrals for the second case where the elastic-plastic 

interface lies between the NA and the bore.  This involves four equations as 

follows.  Figure 4 is included as an aid to setting up these expressions. 

Ml = 4/m 0y(-)y/R
2-y2 dy (20)' 

o   m 

M2 - - 4/ oy(-)y/r
2-y2 dy (21) 

o   m 

M3 = 4/     oy y/R2-y2  dy (22) 
m 

x 
M4 = - 4/     oy y/r2-y2  dy (23) 

m 

Equation  (20)   accounts  for the elastic  stress acting on the  large  circle  from 

0 to m.     Equation  (21)   subtracts the elastic  stress acting on the  small 

circle.     Equation  (22)  accounts for the elastic-plastic  stress acting on the 

large  circle  from m to R,  while equation  (23)   subtracts the elastic-plastic 

stress acting on the  small circle.     Evaluating we obtain the  following 

results: 

4ov — D2 m 
M,   =      {-  -   (R2-m2)3/2 + __   [m(R2_m2)l/2 + R2   sin-l(_)]} (24) 

m 4 8 R 

4ov _ Y"2 m 
M2 {" -  (r2-m2)3/2 + —   [m(r2-m2)  + r2   sin"^-)]} (25) 

m 4 8 r 

M3 =    oy(R2-m2)3/2 (26) 

4 
M4 - - - oy(r2Ti2)3/2 (27) 



As before, the factor 4 accounts for the double symmetry.  Specializing these 

results for the fully plastic condition p = R gives m = 0.  We then have 

Mfp = - oy(R
3-r3) (28) 

Dividing equation (28) by equation (19) we have the ratio of the fully plastic 

moment to the yield moment 

Mfp  16R (R3-r3) 
 =  (29) 
My   3-rr  (R^-r4) 

We see that for the tubular beam this ratio is not a constant as in the case 

of the rectangular beam, but depends on the radii of the cross section.  The 

algebraic sum of the equations (24) to (27) gives the desired result for the 

bending moment in terms of the depth of the elastic-plastic interface 

parameter m in the region for 0 < m < r.  As before, these can be put in terms 

of the explicit parameter p by making the substitution m = R-p.  A computer 

program for the solution of the equations belonging to the two different 

regions has been written and given the acronym MOMENTU.  It contains two DO 

LOOPS — one for the yield stress av and the other for the depth of the 

elastic-plastic interface p.  Results from the program are shown graphically 

in Figure 5 for the case where R = 3.375 inches and r = 1.75 inches and av = 

162 Ksi and 172 Ksi. 



Before leaving this section, we might extract additional information from 

the equations developed for tubular beams.  By focusing on equations (24) 

through (27), we can derive a moment expression for a solid circular rod using 

equations (24) and (26) only.  This is the same as neglecting to subtract the 

expressions in equations (25) and (27).  Doing this we get 

Oy Öy OyR^ m 

M « Mi + H-i  = — (R2-m2)3/2 + — R^R2^2)1/2 + sin_1(-)   (30) 
3 2 2m       R 

Now specializing this for the two cases as done before, we get values for the 

yield and fully plastic moments.  Letting m = R, the condition for incipient 

yield, we get the following from the only non-zero third term. 

ÖyTT 
My = --- R3 (31) 

Letting m = 0,  all three terms remain,  but  the third term becomes 

indeterminate requiring the use of l'Hospital's Rule.     Differentiating and 

evaluating,  the third term becomes equal to ayR3/2 and the  sum of the three 

terms gives the value  for the fully plastic moment. 

Mfp  = -  OyR3 (32) 

The moment ratio is then: 

Mfp       3 ayR3       16 
 = = — =  1.6976  S   1.7 (33) 
My        TT  OyR3       3ir 



As in the case of the rectangular beam, the moment ratio is independent 

of the geometry for the solid circular rod.  Of course the value of 1 6/3TT 

could have been obtained more easily by specializing equation (29) for the 

case r = 0. 

Strain-Curvature Relations 

Figure 6 shows the relationship of the strains on the outside fiber of 

the beam to the yield strain.  This is based on the assumption that "planes 

remain plane".  While this assumption is rather easy to believe for the case 

of elastic bending, intuitively it is harder to accept when bending involves 

large plastic strains.  McCullough^ showed this assumption to be quite good in 

his experiments involving elastic-plastic bending of lead beams.  Figures 7 

and 8 show strain vs. depth of cross section for elastic strains as well as 

permanent strains after removal of the load.  The strains were measured with 

resistance strain gages and are probably accurate to 3-4 percent.  Based on 

McCullough's observations* and the data presented here, the assumption that 

"planes remain plane" appears to be valid.  Based on ratio, we can then write 

h/2 
eMAX = Ey (34> 

h -p 

as p ■*■  h/2, the denominator approaches °° and we theoretically have a strain 

singularity.  This expression can readily be adapted to circular tubes by 

replacing h/2 by the outside radius R.  We then have 

^McCullough, B. H. , "An Experimental and Analytical Investigation of Creep in 
Bending," Trans ASME, Journal of Applied Mechanics, Vol. 55, 1935, p. 55. 



R 
eMAX = ;— ey (35) 

R-p 

One can take advantage of the "planes remain plane" assumption to 

experimentally evaluate the large strains that sometimes occur on the outside 

fiber of the beam subjected to elastic-plastic bending.  One can place gages 

at various depths or distances from the NA on a vertical line representing a 

given cross section of the beam.  From a linear plot of strain vs. distance 

from the NA. one can extrapolate to determine the strains at the extreme 

fibers. 

From Hooke's law and the flexure formula from elementary bending theory, 

we can calculate a value for the psuedo elastic strain to be subtracted from 

the maximum elastic-plastic strain to determine the residual or permament 

strain. 

*  Mc 
e = — (36) 

El 

Here M is the bending moment, c the distance from the NA to the outside fiber, 

E is the modulus, and I the moment of inertia.  This of course assumes linear 

unloading.  We then have: 
* 

eres " eMAX " e O7) 

Finally to close out this small communication, we should include some 

remarks about curvature.  From elementary calculus, the following expression 

can be obtained 

dx2 

< o—T" <38) 
[i + m\vi 

dx 

10 



For small deformations, the slope dy/dx Is small compared to unity, hence the 

squared term is still smaller and can be neglected.  So to a good approxima- 

tion the curvature is equal to the second derivative of the deflection with 

respect to the distance along the beam.  Then 

d2y 
K a -- (39) 

dx 

From the well-known Bernoulli-Euler formula we have: 

d2y  M 

dx2  El 
(40) 

Hence 

M 
K  (41) 

El 

or 

d2y 
~ . « (42) 

It then appears that one method of determining the deflection is by 

integrating the curvature twice. 

From elementary beam theory based on the assumption that "planes remain 

plane" we also have 

e = y/RA (43) 

where e is the strain on a fiber located at a distance y from the NA. and RA is 

the radius of curvature. Since R^ = 1/K we have a simple relationship between 

strain and curvature 

K = - (44) 
y 

11 



From this expression and those developed for bending moment, moment-curvature 

or moment-strain curves can be developed.  Figures 9 and 10 show plots of 

bending moment-curvature for a rectangular beam and tubular beam, respec- 

tively. 

RESULTS AND CONCLUSIONS 

Theoretical expressions for bending moment versus depth of elastic- 

plastic interface are developed for rectangular and circular tubes.  These are 

specialized to give the moment for incipient yielding and the fully plastic 

condition.  The expressions for the circular tubes are specialized to give 

results for a solid circular rod.  The possibility of a strain singularity 

occurring when the elastic-plastic interface coincides with the NA is brought 

out.  The assumption that "planes remain plane" is examined, and experimental 

data is presented which supports the assumption even when the plastic strains 

are of the same order as the elastic strains.  The basis for determining 

residual or permanent strains and expressions for their calculation are given. 

Experimental data is given which shows that "planes remain plane" even for 

permanent strains resulting after unloading from elastic-plastic bending. A 

brief section discusses curvature and strain-curvature relationships. 

From the results given we can see that the "planes remain plane" assump- 

tion used in elementary beam theory is also valid for deformations well into 

the elastic-plastic regime.  Secondly, the rather simple theory presented can 

give some good insight into the complex area of elastic-plastic deformation by 

bending. 

12 
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Figure 1. Cross section and stress distribution for rectangular beam. 
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Figure 4.  Cross section and stress distribution for circular tube ■ 
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Figure 6.  Strain distribution over the cross section for a rectangular 
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ATTN:  TECH LIB 
FT BELVOIR, VA 22060 

COMMANDER 
US ARMY TANK-AUTMV R&D COMD 
ATTN:  TECH LIB - DRDTA-UL        1 

MAT LAB - DRDTA-RK        1 
WARREN, MICHIGAN 48090 

COMMANDER 
US MILITARY ACADEMY 
ATTN:  CHMN, MECH ENGR DEPT        1 
WEST POINT, NY  10996 

US ARMY MISSILE COMD 
REDSTONE SCIENTIFIC INFO CEN 
ATTN:  DOCUMENTS SECT, BLDG 4484   2 
REDSTONE ARSENAL, AL  35898 

COMMANDER 
REDSTONE ARSENAL 
ATTN:  DRSMI-RRS 1 

-RSM 1 
ALABAMA  35809 

COMMANDER 
ROCK ISLAND ARSENAL 
ATTN:  SARRI-ENM (MAT SCI DIV)     1 
ROCK ISLAND, IL 61202 

COMMANDER 
HQ, US ARMY AVN SCH 
ATTN:  OFC OF THE LIBRARIAN        1 
FT RUCKER, ALABAMA 36362 

COMMANDER 
US ARMY FGN SCIENCE 
ATTN:  DRXST-SD 
220 7TH STREET, N.E. 
CHARLOTTESVILLE, VA 

5 TECH CEN 

22901 

COMMANDER 
US ARMY MATERIALS § MECHANICS 

RESEARCH CENTER 
ATTN:  TECH LIB - DRXMR-PL 
WATERTOWN, MASS  02172 

NOTE:  PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN:  BENET WEAPONS LABORATORY, 
DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, N.Y. 12189, OF ANY 
REQUIRED CHANGES. 
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